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Abstract—Person Re-Identification is all about determining a
person’s entire course as s/he walks around camera-equipped
zones. More precisely, person Re-ID is the problem of matching
human identities captured from non-overlapping surveillance
cameras. In this work, we propose an approach that learns a
new low-dimensional metric space in an attempt to cut down
multi-camera matching errors. We represent the training and test
samples by concatenating handcrafted features. Then, the method
performs a two-step ranking using elementary distance metrics
and followed by an ensemble of weighted binary classifiers.
We validate our approach on CUHK01 and PRID450s datasets,
providing only a sample per class for probe and only a sample for
gallery (single-shot). According to the experiments, our method
achieves CMC Rank-1 results up to 61.1 and 75.4, following lead-
ing literature protocols, for CUHK01 and PRID450s, respectively.

I. INTRODUCTION

Person Re-Identification (Re-ID) is the inter-camera human
association that tracks individuals through distinct field-of-
view (FoV) cameras. More precisely, person Re-ID is the
problem of matching human identities captured from non-
overlapping surveillance cameras. For a clearer understanding,
think of a set of cameras installed in an office building
labeled from A to Z. When a subject walks from camera’s
A FoV to camera’s B FoV, human re-identification attempts
to identify a unified path from discontinuous tracks, tracking
the individual’s full course on multiple cameras. In traditional
person Re-ID methods, given a query image or a collection of
images from an unknown subject, also known as probe image,
and a gallery set comprised of numerous pictures of known
individuals, the idea lies on building a ranked list containing
all persons enrolled in the gallery set taking into account their
similarity to the unknown probe image.

Because of the increasingly number of camera networks set
out in areas such as office buildings, shopping centers, airports,
railway stations, person re-identification tasks have earned a
significant consideration from the research community. Such
surveillance systems generate many hours of videos, making
the manual processing impractical. As a consequence, the hu-
man supervision of multi-camera videos tend to be inaccurate,
time-consuming and exhausting, which critically reduces the
monitoring efficiency. However, situation awareness is a fun-
damental step for qualified security. Hampapur et al. [1] state
that intelligent surveillance systems composed by information

from diverse strands are key to exercising conscious security
in various scenarios these days. They also claim that automatic
video analysis is capable of non-intrusively detecting activities
and predicting undesirable activities, making the security staff
more pro-active [2].

The predominant challenge for person Re-ID is the person’s
appearance discrepancy over different cameras [3]. For an
accurate Re-ID system, satisfactory feature descriptors have to
be obtained from visual data under unrestrained circumstances,
which people do not cooperate with data acquisition. Many
surveillance cameras are not installed properly or do not cap-
ture good-quality videos, outputting low frame rate and resolu-
tion. In addition, there is a high chance of subjects being fully
or partially occluded by objects or by other people. Depending
on the requirements, a Re-ID surveillance system must deal
with single images per person (a.k.a. single-shot task) or take
videos as input (a.k.a. multi-shot task), indicating that several
person-containing frames are available to compound probe
and gallery sets. More frames per subject are desirable since
more instances of a person are explored to generate better
discriminative systems. All these limitations turn person re-
identification into a complex problem, especially when there
are numerous individuals enrolled in the gallery set as the large
number of subjects may lead to specificity loss, escalating the
probability of identification inaccuracy.

In defiance of all existing challenges, this work consists
of single-shot person Re-ID. We extract two feature repre-
sentations widely used in the literature to learn a new low-
dimensional metric subspace in pursuance of reduced multi-
camera matching errors and robust similarity functions. These
errors occur frequently in the human re-identification domain
mainly due to lighting, pose and viewpoint changes. On the
new subspace, we employ a two-stage ranking based on either
cosine or Mahalanobis distance [4], [5] and binary classifiers.
Initially, the proposed method generates a list of candidates
based on one of the previously mentioned distance metrics,
where gallery samples that closest match the probe image lead
the list. Only individuals on the top of the ranking proceed
to the second stage. Influenced by the work of Vareto et
al. [6], we learn a small ensemble of binary classifiers, for top
candidates only every time there is a probe query in favor of
augmenting the method’s accuracy. The approach subdivides
probe and gallery set samples in overlapping sections so that



each ensemble classifier is dedicated to a segment of the
image. The final candidate list is generated using multiple
Support Vector Machine (SVM) classification models.

The main hypothesis behind our work lies on two fun-
damental steps: (i) a constructive algorithm established on
distance metrics resulting in a reduced candidate list, and (ii)
classification models that are capable of refining the overall
performance of the approach. In other words, experiments
show that running a collection of classifiers following a
straightforward similarity criterion significantly improves the
precision of the method.

The most relevant contributions are: (i) the employment of
simple distance metrics followed by an ensemble of weighted
binary classifiers; (ii) an easy-to-implement algorithm with just
a few parameters to be set; and (iii) a low-computational cost
method, suited to being deployed on embedded systems, in
comparison with deep neural network methods.

The remaining of this paper is organized as follows. Sec-
tion II contains literature works that are relevant to our
approach, Section III further describes our method, Section IV
outlines protocols and experiments, and Section V concludes
with final remarks.

II. RELATED WORKS

Person re-identification (Re-ID) may be considered a chal-
lenging problem, even for the human eye. In general, a per-
son’s appearance usually varies across all cameras since there
are completely distinct illumination and camera viewpoints.
For that reason, Re-ID has become an intense researched topic
in the last decade [7]–[14].

One of the most important elements for person re-
identification is the way color and textural information are
characterized. When it comes to surveillance, cameras cover
wide areas. As a result, subjects are commonly framed in low
resolution and in a mixture of pose variations. This constrain-
ing condition is sufficient to make researchers explore alternate
methods, which contemplate both color name descriptors and
color histograms [15], [16]. There is a large number of
researchers working on appearance-based descriptors seeing
that these descriptors are responsible for holding appearance
information of people’s clothes [15]–[18].

Nappi et al. [12] propose a generic semi-supervised ap-
proach for face and object re-identification through a modular
architecture oriented to online data. Zhao et al. [15] design a
method to learn human salience in an unsupervised manner,
then they apply patch matching to build a correspondence
between image pairs and reduce multi-camera misalignment.
Yang et al. [16] propose a new color descriptor combined
with a simple metric learning method that enriches the feature
representation. Ma et al. [17] come up with a new color repre-
sentation for person Re-ID, a feature descriptor that not only
models color characteristics, but also represents texture and
spatial structures. Some researchers prefer to combine different
color feature descriptors with some texture descriptors like
local binary pattern [19], or even different methods to represent
images and signals, for instance, wavelet transforms and filter

banks. Matsukawa et al. [20] propose a different feature
descriptor based on the pixels’ hierarchical covariance. The
method describes local regions in an image with a hierarchical
Gaussian distribution considering a set of multiple Gaussian
distributions where every single Gaussian portrays the form
of a local patch. To that end, the descriptor ends up modeling
both mean and covariance as the authors have concluded that
the mean color in local parts have a major discriminating
contribution for matching subjects across cameras. Different
from previously mentioned methods, Xiao et al. [21] present
a method of “muting” neurons on a domain based dropout
algorithm to learn deep feature representations. Furthermore,
Varior et al. [22] propose a Siamese CNN for person Re-
ID that adaptively boosts local features for enhancing the
discriminative capability of the network.

Many approaches encompass appearance-based similarity in
order to identify their resemblance and establish a prospect
equivalence. Most works from the literature employ low-level
feature descriptors containing color and texture information,
generally extracted from clothing. Therefore, features obtained
from garments tend to be reliable over short-time periods only
as individuals usually dress different clothes on adjacent days.
As a result, most state-of-the-art works in the literature seek
solutions for the short-time period scenario [5], [11], [13],
[14], [21]–[24].

Several authors have dedicated their efforts on learning
latent metric spaces as they realized it may attain relevant
results when combined with distance-based techniques such
as nearest neighbors. They learn new metrics by minimizing
the intra-class distances as well as maximizing the inter-
class distances. In general, metric-learning based methods are
limited by its inner information loss and error, caused by the
subtraction of misaligned feature vectors.

Li et al. [11] tackle the Re-ID problem through a transfer
learning framework where training samples are chosen and
re-weighted in accordance with their distance approximation
to the query image and a list of candidates. The metric-
learning framework learns specific metrics for individual
probe-candidate settings. Hirzer et al. [25] developed a method
that learns the transition from one camera to another by means
of the Mahalanobis metric using pairs of tagged samples from
distinct cameras. In addition, Roth et al. [5] evaluate how
metric learning the techniques derived from Mahalanobis dis-
tance can be applied to single-shot person re-identification, that
is, considering individuals with a single image sample. Liao
et al. [23] design new techniques for feature representation
and metric learning, the most relevant stages in person Re-
ID. The descriptor takes into account horizontal occurrences
of local features to make a robust description in an attempt
to reduce the variability resulted from different viewpoints.
The new low-dimensional subspace is built from a cross-
view quadratic discriminant analysis, and simultaneously, a
quadratic discriminant analysis metric is learned on the derived
subspace. In other words, the framework concurrently learns a
discriminant subspace and a distance metric so that it is able
to pick the optimal dimensionality.



Fig. 1. Illustration of the proposed pipeline: Sample partition: (A-B) The original image is divided among four overlapping chunks. LOMO and GOG feature
representations are extracted from the initial whole-body image and all four chunks separately. After that, LOMO and GOG features are concatenated into a
new elongated feature descriptor, which is used to learn a low-dimensional XQDA representation. Test procedure: (C-E) Given a probe p and a full-body
gallery sample gi ∈ G, it computes the similarity distance between p and gi, resulting in an initial list of candidates. (F-G) For leading candidates, original
full-body and derived samples are used to train five SVM models for the sake of improving the method’s overall performance.

Prates et al. [26] reach a considerable high matching per-
formance employing kernel PCA, a statistical method that
learns a shared subspace and captures most of the variability
with just few vector basis. The work engages in a framework
that addresses both camera transitions and dimensionality
reduction with a reduced number of dimensions. In another
work, Prates et al. [27] propose some adaptations for the
kernel partial least squares. Partial least squares (PLS) is a
statistical technique capable of simultaneously diminishing
dimensionality and increasing discerning power. According to
the authors, kernel-based PLS captures distinctive information,
vital for multi-class problems like person Re-ID. Kernel PCA
and PLS are widely used in other areas, such as medicine,
for genomic prediction and disease detection [28]–[30]. Even
though kernel-derived methods came up with great contri-
bution to re-identification, kernel PLS neglects the fact that
cameras are captured on different field of views, which is
critical for the Re-ID problem.

As detailed in this section, the vast majority of human
re-identification methods initially extract features from a set
of cameras. Then, they build a new metric space that feeds
machine learning algorithms. Unlike the greater part of works
in the literature, we first compute simple cosine distances
between a probe and all samples from the gallery set. This
comparison produces a list of candidates where most similar
enrolled individuals are chosen to estimate Support Vector Ma-
chine (SVM) models in pursuance of an enhanced recognition.
We detail the proposed approach in the next section.

III. PROPOSED APPROACH

As mentioned in Section I, image variations such as lighting
and pose changes, among other factors, are responsible for
the main difficulties encountered in person re-identification
(Re-ID). To mitigate damaging effects resulting from camera
capture in non-cooperative surveillance settings, the proposed
method combines different feature representations, project-
ing them onto a new common subspace, later adjusting po-
tential candidate samples to better ranking positions using
binary classifiers. In addition, the proposed Re-ID method
partitions the original1 whole-body image into intersecting
blocks/chunks. This is an attempt to increase the gallery
set size and perform data augmentation since the approach
focuses on single-shot tasks. From now on, we refer to both
full-body image and its corresponding chunks for a given
subject as Overlapping Image Collection (OIC). Look over
the proposed pipeline on Figure 1, further described in the
following subsections, for a clear understanding.

In this work, we develop a method that employs hierarchi-
cal Gaussian Of Gaussian (GOG) [20] and Local Maximal
Occurrence (LOMO) [23] descriptors. While GOG presents
a part-based model [20], [31] that subdivides a person’s
image into smaller segments to better build feature descriptors,

1We may also refer to the original full-body images, provided by the utilized
datasets, as authentic, genuine and primary samples. On the contrary, images
generated from overlapping blocks are commonly referred to as derived
samples or overlapping chunks.



LOMO maximizes the occurrence of local features to obtain
a consistent color representation from different camera views.
The proposed approach also estimates representation features
in a low-dimensional latent space using Cross-View Quadratic
Discriminant Analysis (XQDA) [23], responsible for produc-
ing fast and efficient learning metrics that are also able to
reduce variations in human appearance caused by different
camera views. Several works in the literature assure that
moving data into a common subspace is able to improving the
feature discriminability and consequently the accuracy [23]–
[27].

A. Training Stage

The approach loops through each individual i from the
gallery set G to generate its correspondent overlapping image
collection ci ∈ C, as shown on Figure 1-A. Consequently,
pairs of GOG and LOMO feature representations are obtained
and merged together for each image in ci, where each ci ∈ C
consists of five images, particularly, the original input image
and four complementary intersecting images covering mainly
head, trunk, abdomen and legs. As these features are acquired
for all n known subjects individually, where n = |G| and
1 ≤ i ≤ n, they are stored in a new analogous set of
features vectors fi ∈ F . In an equivalent manner, each fi
holds five vectors, one for each image associated with ci. After
extracting features and storing them in the feature set F , the
method projects them onto a low-dimensional XQDA subspace
attempting to make these feature representations more robust
to the predominant person Re-ID obstacles, mainly different-
camera field of views. Feature vectors from non-authentic
images play an essential role on the testing stage, when
machine learning algorithms are employed to improve the
overall performance of the method.

B. Testing Stage

Given a probe image p, the process starts with the OIC
generation. Strictly speaking, the single query image is repli-
cated due to the addition of overlapping blocks, similarly to
the training stage. The query image’s data augmentation turns
out to be the collection ĉ, also containing five images. Then,
the proposed method extracts GOG and LOMO features for
each image composing ĉ. After the concatenation of GOG
and LOMO features, the approach builds a list of five features
vectors, stored in a container named f̂ . In summary, the five
vectors correspond to the primary full-body image and its four
overlapping blocks. XQDA is then applied on the feature set f̂
in pursuance of features comparable to the previously learned
subspace. The search for the correct identity of a given probe
image is organized in two stages, described as follows.

1) First step: The first step considers the initial full-
body images only. It computes a similarity metric between
the probe feature and all feature vectors conjoined with the
gallery set’s genuine samples in a k-nearest-neighbor fashion.
The algorithm generates a list of candidates encompassing
the distance from the current probe feature vector to every
single subject enrolled in the gallery set. The list is sorted

in ascending order so that the subjects that closest match the
probe image come out first. Figure 1-C and Figure 3 illustrate
the list of candidates for arbitrary probe samples.

2) Second step: Different from the first, the second step
considers primary images and all their complementary over-
lapping chunks. Intersecting blocks of the original images
are added in favor of increasing the number of samples
available for each gallery set class. According to Figure 1-
E, the algorithm picks the top two individuals of the sorted
list of candidates, culminating in two OIC’s from the gallery
set: fm and fn, where m and n hold the identity of the
first and second best candidates, respectively. As reported in
Figure 1-F, five binary SVM classification models mj ∈ M
are learned, each one works with a single “body part”. Each
feature vector from fm is allocated to the respective SVM
model as a positive class (+1) whereas features from fn
are assigned to the appropriate SVM classification model
as a negative class (−1). In the end, the feature vectors
of the probe sample are projected onto their corresponding
classification models in search of their respective response
values. A majority of positive responses indicate that m is
more likely to corresponds to the correct identity. Otherwise,
the method swaps m and n, as demonstrated in Figure 1-G,
resulting in an updated list of candidates.

C. Detailed Descriptions

In this section, we give some more details on crucial
aspects of proposed approach. These elements range from
overlapping image collections and similarity metrics to the
list of candidates and weighted support vector machine.

1) Overlapping Image Collections (OIC): The method di-
vides the subject image into overlapping chunks horizontally
– part of the sliced image chunk reappears on the subsequent
chunk. Figure 2 exemplifies the way an image is sliced in
overlapping blocks. For person Re-ID tasks, it seems there is
no common sense when it comes to overlapping images [32]–
[34]. However, it is common to split a human full-body image
among head, trunk, abdomen and legs in such arrangement
where the earliest tend to be gradually more discriminative
than the succeeding ones [32]. New image blocks are essential
to the process of picking the most discriminative samples from
a list of candidates. The mechanism of splitting a human image
between overlapping chunks end up acting as a procedure
to generate new samples of equivalent identity: features are
extracted and processed from each image block as if they are
individual images, but pertaining to the same set. Namely, they
are evaluated as being part of the same class.

2) Similarity Metrics: The proposed approach starts the
procedure of rearranging the candidates right after comput-
ing either the Cosine or Mahalanobis distance between the
probe image and all samples of the gallery set. The Co-
sine Distance (CD) is calculated by the dot product defined
as cd = ~a.~b =

∑n
i aibi therefore, it is an orientation

measure and the angle cos Θ between the vectors makes
up the equation of similarity as cos Θ = ~a.~b

‖~a‖‖~b‖
. On the

other hand, the Mahalanobis Distance (MD) is computed as



Fig. 2. Illustration of the generated overlapping blocks/chunks. Note that in
our approach we generate new samples following a fifty-percent overlap from
top to bottom only.

md =
√

(xi − x̄)S−1x (xi − x̄)T ∀ xi ∈ x, where x is an one-
dimensional array of size n; x̄ is mean value for x, and S is
the variance-covariance matrix. In our approach, S is obtained
with XQDA’s M parameter, which corresponds to the learned
metric kernel.

3) List of Candidates: Figure 3 depicts the list of candidates
for a given probe image. Each row represents a probe query
where the first column holds the probe sample. Agglomerated
images on the right consists of all n samples from the gallery
set that closest correspond to the “unidentified” image. We can
infer that the closer the gallery samples are to the left columns,
the more similar they are to the probe image. Strictly speaking,
one can say that the yellow-bounded probe sample (a) on
Figure 3, captured with camera d1, satisfactorily encountered
its corresponding identity, taken with camera d2. It means that
the legitimate corresponding identity for the probe sample (a)
is the first candidate (also delimited by yellow) among all
samples from the gallery set. This is no longer the case with
the probe sample (b) since its corresponding identity ended up
in second place. The worst case is represented by probe sample
(c) since its matching identity came to a close as the least
similar sample from the gallery set, that is, the last candidate
from the gallery set.

4) Support Vectors Machines (SVM): For the re-ranking
step, the method learns an ensemble of five binary SVM
models [6], [35], regarding top candidates only. The number
five corresponds to each body part concerning the generation
of overlapping chunks (dataset-provided full body, and derived
images regarding head, trunk, abdomen and legs) shown on
Figure 1-F and Figure 2. The proposed method assumes there
are more discriminating chunks than others. With that in mind,
weighted SVM models are learned and their response values
are multiplied by weights wj ∈ W, 1 ≤ j ≤ 5 since Yi et
al. [32] claim that body chunks comprising head and trunk
tend to attain better results than abdomen and legs alone, but
fail to outperform the association of all five together.

IV. EXPERIMENTS

In this section we carry out a thorough evaluation of our
algorithm, which combines elementary distance metrics and
a small ensemble of binary support vector machine models
followed with majority voting to track and identify people

Fig. 3. Example of a list of candidates for three arbitrary queries: given a
probe sample p (first column on the left), gallery-registered individuals gi ∈ G
(remaining columns) are arranged in such a way that leftmost samples are
more similar to p. Note that in this example, (a) has a Rank-1 corresponding
identity, indicating that the algorithm successfully encountered the correct
subject, (b) has its corresponding probe at Rank-2 and (c) is an undesirable
case since it mistakes n − 1 identities before returning the right subject at
Rank-n.

across multiple security cameras. We provide a brief dataset
summary in Section IV-A. Evaluation metric and Protocol
are detailed in Section IV-B. In Sections IV-C and IV-D
we specify Feature Descriptors and Parameters, respectively.
Finally, Section IV-E reports all results, including experiments
comparing our method to those from the literature.

A. Datasets

We evaluate the proposed approach on two publicly avail-
able datasets: CUHK01 and PRID450s. CUHK01 [11] was
recorded in a campus environment containing around 971
individuals captured by two distinct field-of-view cameras. On
the other hand, PRID450s [5] contains 450 pairs of pedestrian
images. Due to the non-deterministic characteristic of the
utilized protocol, the CUHK01 experiments were repeated 10
times whereas PRID450s had no less than 30 executions. The
numbers of experiments vary as we set a unique upper bound
runtime for both benchmarks. On account of CUHK01 having
more samples and classes than PRID450s, it demands more
computational time in every iteration, culminating in only 10
repetitions. Based on the majority of literature approaches
comprising these datasets [20], [36], [37], dataset samples are
resized to the following height×width dimensions: 160×60
for CUHK01 and 128× 48 for PRID450s.

B. Evaluation Metric and Protocol

Cumulative Matching Characteristics (CMC) is the standard
performance metric of biometric systems operating in the
closed-set identification task. CMC demonstrates how often
subjects show up in distinct ranks like 1, 5, 10, 50, etc. based
on a matching rate. In general, X-axis indicates ranking values
versus the accuracy rate depicted on the Y-axis.



TABLE I
CMC EVALUATION OF THE PROPOSED APPROACH CONSIDERING FULL BODY AND/OR DIFFERENT OVERLAPPING CHUNKS OF PRID450S DATASET.

Chunks Body Body+Chunks Body+Chunks+SVM
Methods/Ranks 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

GOG+LOMO 72.1 89.8 94.0 97.5 72.5 90.9 95.5 98.5 73.9 90.9 94.9 98.0 75.4 90.9 95.5 98.5
GOG 68.7 87.6 93.0 97.2 66.9 87.6 93.7 97.3 70.9 89.0 93.6 97.6 71.2 87.6 93.7 97.3

LOMO 58.2 81.1 88.0 93.7 60.0 82.1 89.3 95.0 60.9 83.1 89.8 94.9 63.4 82.1 89.3 95.0

The employed protocol is similar to the one used by
Paisitkriangkrai et al. [38] where all identities are randomly
divided into two disjoint subsets. On CUHK01, we randomly
select 486 out of 971 dataset individuals for training a new
subspace. The remaining subjects’ pairs of image are split
between gallery and probe sets. Similarly, we pick 225 out of
450 individuals from PRID450s to compose the training set
as the other subjects’ image pairs end up constituting gallery
and probe sets.

Table I demonstrates the proposed method’s performance
on PRID450s dataset considering features extracted separately.
The approach’s evaluation is performed taking into account
each OIC (see Section III-C1). Column Chunks holds re-
sults for experiments discarding original samples provided
by the dataset and considering overlapping blocks only. In
addition, column Body contains the outcome of experiments
comprising only authentic images supplied by the dataset.
Column Body+Chunks encloses experiments that combine
primary and derived images. More precisely, we generate
overlapping image chunks to augment data and perform a
simple k-nearest-neighbor algorithm in place of the SVM re-
ranking stage. To conclude, we demonstrate the results for
the approach meticulously described in Section III-B2 on
column Body+Chunks+SVM. Note that results were gradually
improved with the addition of extra data and learning models.

C. Feature Descriptors

The feature extraction representation employs both GOG
and LOMO in combination with XQDA to determine subjects
similarity in the new low-dimensional subspace. We come up
with two approaches: one executes the feature concatenation
before XQDA projection whereas the other concatenates fea-
ture vectors after. They are better described below:
• XQDA(GOG) + XQDA(LOMO): GOG and LOMO fea-

tures vectors are extracted separately, followed by indi-
vidual XQDA projections and finished up with feature
vectors concatenation.

• XQDA(GOG + LOMO): GOG and LOMO features vec-
tors are obtained independently, followed by their con-
catenation and finished up with a XQDA projection.

For each dataset evaluation outlined on Tables II and III,
we only consider the best results attained with Cosine and
Mahalanobis distances. There is a difference of approximately
9 p.p. and 4 p.p. at Rank-1 on CUHK01 and PRID450s
datasets, respectively, in the aforementioned proposed ap-
proaches. The XQDA(GOG + LOMO)-based approach attained
top result on CUHK01 benchmark opposing the XQDA(GOG)

+ XQDA(LOMO)-based version, which reached best result on
PRID450s dataset.

The Cosine distance has shown to be more effective on the
PRID450s benchmark since the combination of some factors
influence the choice of distance metrics. In the case of the
CUHK01 dataset, the amount of images available in the dataset
can improve the correlation between samples and consequently
the final XQDA projection becomes more powerful. Zhang
et. al [39] state that there is a high probability that weights
assigned to each dimension of the feature vector may not
indicate the actual significance of that dimension. Besides, the
distance measure considers the relation between each feature
vector element with all other elements.

D. Parameters

This section describes the experimental configuration that
differs from most relevant works in the literature. The custom
settings are applied to feature descriptors, image chunks and
machine learning algorithms. More details are characterized
below:

1) GOG, LOMO and XQDA: We follow the same pa-
rameter criteria adopted by Matsukawa et.al [20] and Liao
et.al [23] in the process of extracting GOG and LOMO feature
descriptors. GOG is the general term to the fusion of different
color space descriptors. XQDA has an essential parameter, a
regularizer λ set as 1x10−5, that impacts how smooth and
robust the subspace estimation can be.

2) OIC: The proposed approach divides the original image
into four overlapping partitions. As demonstrated on Figure 2,
each chunk consists of 50% of the lower part of the previous
image and 50% of the upper part of the subsequent image.
Figure 4 illustrates the CMC curves with the employment of
the Cosine distance for separate chunks of the image. In fact,
the method calculates the Cosine distance for every image part
pertaining to gallery and probe sets. Based on an empirical
evaluation, the results have led us to a specific chunk weight
arrangement: full body, head, trunk, abdomen and legs chunks
are respectively multiplied by each weight stored in the array
[0.286, 0.21, 0.168, 0.193 e 0.143]. Some body parts, such
as head and trunk, have more discriminative characteristics
than abdomen and legs, justifying the reason for receiving
higher weights and resulting in a bigger influence during the
prediction process.

3) SVM: Multiple support vector machine models are pop-
ulated with samples from the candidate list, one sample for
each class where SVM classifier is trained for a specific body
chunk. The SVMs are initialized with its default parameters
and set with a maximum of 1 × 103 numerical optimization



Fig. 4. CMC ranks obtained on PRID450s dataset demonstrate the degree
of relevant information present in each body part on the final rank result.
This chart represents the ranks using the concatenated GOG and LOMO
descriptors.

iterations. The adopted linear kernel function φ computes
the inner product of the transformed predictors as it can be
understood as an useful way to transfer the observed features
into another space. Further, the C parameter adjusts that
the misclassification of training examples is set to 1.0. For
large values of C, the optimization picks a smaller-margin
hyperplane since it performs better at getting all the training
samples classified correctly.

E. Results

We observe through the experimental results that most
gallery identities that correspond to the probe query come
up at the first positions in the list of candidates during the
first ranking stage. This is the primary objective of the testing
stage’s first step whereas the second step focuses on re-ranking
the list of candidates with the addition of overlapping body
chunks. We contrast our method with approaches that use deep
learning and handcrafted features. Table II shows the results
found for the CUHK01 dataset whereas Table III outlines the
outcome for PRID450s dataset. Italicized values in the tables’
first rows indicate the results from deep learning approaches.

The metric used to calculate the distance between pairs of
samples is directly linked to the reorganization of the candidate
list. In this case, the use of classification models to estimate
distances, combined with the information provided by the
overlapping image collections, clearly enhances the candidate
list re-ranking process, justifying our method. In some cases,
where the parts of the samples are not discriminatory enough,
we notice that the SVM models cannot differentiate the classes
very well. In such cases, erroneous changes may occur in the
reorganization of the samples in the candidate list.

The proposed approach has not outperformed previous state-
of-the-art works on the CUHK01 benchmark. However, it is
important to note that our approach closely matches some
deep-learning-based architectures’ performance [41] with a
Rank-1 of 78.4% for the PRID450s dataset and a relatively
good approximation for the CUHK01 dataset with 73.4% on
CMC Rank-1. The method’s performance neared Yang et.
al [42]’s work efficiency, which uses extra information to
enhance the method’s overall power. We attained our best
Rank-1 result of 61.1% under the XQDA(GOG+ LOMO)

TABLE II
TOP RANKED APPROACHES (CMC@ RANK-R, %) ON THE SINGLE-SHOT
PROTOCOL (M=1) OF CUHK01 DATASET. DEEP LEARNING METHODS ON

TOP ROWS AND OUR PROPOSED ALGORITHMS AT THE BOTTOM.

CUHK01 1 5 10 20
Deep Late-fusion [40] 73.4 89.9 94.9 -

Deep L-fusion L/M/H level [41] 70.3 88.5 93.3 -
MVLDML [42] 61.4 82.7 88.9 93.9

GOGFusion+LDNS [36] 60.8 81.7 88.4 93.5
GOG+XQDA [20] 57.8 79.1 86.2 92.1

MetricEnsemble [38] 53.4 76.4 84.4 90.5
LOMO+XQDA [23] 49.2 75.7 84.2 90.8

OURS+XQDA(GOG+LOMO) 61.1 80.1 90.1 93.1
OURS+XQDA(GOG) 59.5 79.0 87.3 91.0

OURS+XQDA(LOMO) 49.0 78.8 85.1 89.2

TABLE III
TOP RANKED APPROACHES (CMC@ RANK-R, %) ON THE STANDARD

PROTOCOL (P=225) OF PRID450S DATASET. DEEP LEARNING METHODS
ON TOP ROWS AND OUR PROPOSED ALGORITHMS AT THE BOTTOM.

PRID450s 1 5 10 20
Deep Late-fusion [40] 78.4 94.2 96.8 -

Deep L-fusion L/M/H level [41] 77.6 93.5 96.1 -
CSPL+GOG [37] 69.2 90.4 95.5 98.2

XQDA+GOG [20] 68.4 88.8 94.5 97.8
CSPL+LOMO [37] 60.3 84.7 91.5 96.3

XQDA+LOMO [23] 59.2 83.8 90.4 95.1
Mirror-KMFA [43] 55.4 79.3 87.8 91.5

OURS+XQDA(GOG)+XQDA(LOMO) 75.4 90.9 95.5 98.5
OURS+XQDA(GOG) 71.2 87.6 93.7 97.3

OURS+XQDA(LOMO) 63.4 82.1 89.3 95.0

feature representation, overcoming some previous works [20],
[23], [36], [38]. On PRID450s dataset, the XQDA(GOG +
LOMO)-based approach obtained expressive results that out-
performed previous literature works [20], [23], [37], [43] as it
reaches a CMC Rank-1 of 75.4%. The method comprising
only XQDA(GOG) also attained a satisfactory result, a
Rank-1 of 71.2%, but a slightly lower performance when
compared to the previous algorithm. It is expected due to
the fact that XQDA(GOG + LOMO) combines GOG and
LOMO descriptors.

V. CONCLUSIONS

In our work, we use handcrafted features to treat the
problem of re-identifying people. It reorganizes the ranking
generated by metric distances through the addition of a small
enbedding of SVM responses. The method captures what over-
lapping image collections have of most discriminating, repo-
sitioning potential samples from a list of candidates to the top
positions of a ranks table. We used a low dimensional subspace
to promote the description of the samples by means of the
combination of GOG and LOMO feature descriptors. We thus
evaluated our approach on a smaller data set (PRID450s) and
another one of medium proportion (CUHK01), corroborating
that our method brings improvements in the distinction of the
samples involved and consequently in the final rank. For future
work, we intend to focus on expanding our list of candidates
by searching for potential samples in ranks farther from the
probe.
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